ממוצע לעומת ממוצע משוקלל
Average ו-Average משוקלל הם שניהם ממוצעים אך מחושבים אחרת. כדי להבין את ההבדל בין ממוצע לממוצע משוקלל, ראשית עלינו להבין את המשמעות של שני מונחים. כולנו יודעים על ממוצעים שכן מלמדים אותם בשלב מוקדם מאוד בבית הספר. אבל מהו הממוצע המשוקלל הזה ומהם השימושים שלו?
Average
זהו מושג שנדרש כדי לדעת את הביצועים או התופעה הכוללת. אם יש 10 בנים בכיתה עם משקלים שונים, אנו מחשבים את המשקל הממוצע שלהם על ידי חיבור המשקלים האישיים שלהם ואז נחלק את סך הכל ב-10 כדי להגיע למשקל הממוצע של הכיתה.
לכן הממוצע הוא הסכום של כל התצפיות הבודדות חלקי מספר התצפיות.
ממוצע משוקלל
בעיקרון, ממוצע משוקלל הוא גם ממוצע עם הבדל קל שלא כל התצפיות נושאות משקלים שווים. אם תצפיות שונות נושאות חשיבות שונה, או משקלים במקרה זה, כל תצפית מוכפלת במשקל שלה ולאחר מכן מתווספת. זה נעשה כדי לקחת בחשבון את החשיבות של תצפיות שונות שכן יש להן משמעות יותר מאחרות. בניגוד לממוצע פשוט, שבו כל התצפיות נושאות ערך זהה, בממוצע משוקלל, לכל תצפית נקבע משקל שונה וכך הממוצע מחושב תוך התחשבות בחשיבותה של כל תצפית. הרעיון יתבהר מהדוגמה הבאה.
נניח, למשל, לתיאוריה ולמעשי יש משקלים שונים בבחינה; יהיה צורך לחשב משקל ממוצע כדי לשפוט את הביצועים של התלמיד במקצוע ולא רק לקחת ממוצע פשוט.
ברור אם כן שהממוצע הוא רק מקרה מיוחד של ממוצע משוקלל שכן לכל ערך יש משקל זהה או שווה כאן. לעומת זאת, ניתן לקחת ממוצע משוקלל כממוצע שבו לכל ערך יש משקל שונה. משקלים אלו הם שקובעים את החשיבות היחסית של כל כמות בממוצע. אז אם אתה צריך למצוא משקל ממוצע של מספר ערכים, הנה הנוסחה הכללית.
ממוצע משוקלל=(a1w1+a2w2+a3w3…..+anwn)/ (w1+w2+…..wn)
כאן 'a' הוא הערך של הכמויות ואילו w הוא המשקולות של הכמויות האלה.
קל מאוד לחשב ממוצע משוקלל באמצעות גיליון אקסל של Microsoft. מה שאתה צריך לעשות זה למלא את ערכי הכמויות ואת משקלן בעמודות סמוכות. השתמשו בכלי הנוסחה וחשבו את המכפלה של שתי עמודות צמודות לכתוב את המוצר בעמודה השלישית. חבר את ערכי הכמויות וגם את עמודת המוצר. השתמש בנוסחה כדי לחלק את שני הערכים שהתקבלו וקיבלת את הממוצע המשוקלל.